Working with arrays

You can edit the code for action parameters that involve arrays of objects.

Many action parameters in Prinergy require lists (or arrays) of objects. For example, the Refine
action needs a list of input files to refine, and the Perform Loose Page Output action needs a
list of pages. Many event properties are also lists. For example, the Page Approval Changed
event provides a list of pages where the approval status has changed.

Working with these arrays in code is considerably more complex than working with simple
assignments.

Simple array assignment

When you want to pass all the members of an event property array to an action parameter
array, the code looks the same as a simple assignment:

"This takes ALL the input files fromthe event and gives themto the action
action.lnputFiles = triggerEvent.|nputFiles

Using Arraylists

ArrayLists are useful because they are untyped and unsized . They will expand as you add to
them and you can put anything in them.

'"Create an ArraylList and add itenms to it

Dim oArray As System Col | ections. ArrayLi st = New

System Col | ecti ons. ArraylLi st

oArray. AddRange(System I O. Directory. GetFiles("c:\", "*.pdf"))
O0Array. Add(soneQ her Qbj ect)

Converting ArrayLists to other arrays

After you have prepared the Arrayli st, you probably need to convert it into other arrays to be
used within the rules—arrays that are typed and sized.

ArrayLi st has a ToArray method that will copy the elements of the ArrayLi st to an array of a
given type.

Converts the ArrayList into an Array of Automation Pages
DimoAlist As System Col l ections. ArrayList ' . . . fill with contents
action. Pages =
OALi st. ToArray(Get Type(Creo. PW5. Aut onat i on. Pri ner gyDat avbdel . Page))

The ToArray method only works if the contents of the ArrayLi st can be cast to the type you
specify. If not, a runtime error appears. You must manually convert each item in the ArraylLi st
to the array. For example, you cannot cast a String to a Fi | eSyst em t em but you can use the
Cr eat eFr omfactory method to create a Fi | eSyst em t emfrom a Stri ng.

' Converts the ArrayList into an Array of Automation FileSystenltens.

Di m oFSI Array() As Creo. PWS. Aut omati on. Pri nergyDat aMbdel . Fi |l eSystemtem = _
New Creo. PWS. Aut onmat i on. Pri ner gyDat aModel . Fi | eSystem t em(0ALi st . count

- 1) {)

For i As Integer = 0 To oAList.Count - 1

OoFSI Array(i) = _

Creo. PWS. Aut omat i on. Pri ner gyDat aMbdel . Fi | eSystem t em Cr eat eFr on{ oALi st (i).
oString)

Next i

—

Flattening nested arrays

Sometimes the data that you want to assign to an action parameter are spread over the
members of an array in the event properties. For example, the results of a Refine action are
available from an Input Files Refine OK event. When you look into that event, you see that it
has the following properties:

Input Files Refined Successfully = The list of input files that refined successfully

Process Refine process

Event time Time that the event was processed
Root event First event in the sequence
Previous Event Previous event in the sequence

Where are the pages? Each of the refined input files has its own list of pages that were created
from it. In other words, each member of the | nput Fi | es array contains an array of pages.

To pass a list of all the refined pages to an action such as Perform Loose Page Output, we
need a way to reach into each input file and build a collection of all the pages.

"First we need to create a holder for the newlist we will be building
Di m newLi st As System Col | ections. ArrayLi st = New

System Col | ecti ons. ArraylLi st

"Now we create a counter variable and initialize to the value 0

Dmi As Integer =0

'Next we create a loop that will go through all the input files (unti
"the counter i reaches the end of the |ist)

Do While (i < triggerEvent.InputFiles.Length)

"W reach into the ith Input File and add its Pages array to our

list

newlLi st . AddRange(tri ggerEvent. I nputFil es(i). Pages)

"I ncrement the value of i

i = (i +1)

Loop

"Finally, we convert our list into an Array of Pages and assign it to the
' Pages paraneter of the action

action. Pages =

newlLi st. ToArray(Get Type(Creo. PWE. Aut onati on. Pri ner gyDat aMbdel . Page))

Filtering an array

Another common requirement is the ability to filter parts of a list that you are not interested in.

For example, you might want a simple way to create imposition proofs of only the front surfaces
of every signature in your job. You want to pass to the Imposed Proof action a list of surfaces

that has all the back surfaces filtered out.

"First we need to create a holder for the newlist we will be building
Di m newLi st As System Col | ections. ArrayLi st = New

System Col | ecti ons. ArraylLi st

"Now we create a counter variable and initialize to the value 0

Dmi As Integer =0

"Next we create a loop that will go through all the input files (until
"the counter i reaches the end of the |ist)

Do Wiile (i < triggerEvent. Surfaces. Length)

"W ook at the ith Surface and add it to our list if it is “Front”

If triggerEvent. Surfaces(i).Side = "Front" Then

newlLi st . AddRange(tri gger Event. Surfaces(i))

End If

"I ncrenent the value of i

i = (i + 1)

Loop

"Finally, we convert our list into an Array of Surfaces and assign it to
t he

' Surfaces paraneter of the action

action. Surfaces =

newlLi st. ToArray(Get Type(Creo. PWE. Aut onat i on. Pri ner gyDat aMbdel . Sur f ace))

Filtering and flattening arrays

Combining the two patterns for flattening and filtering gives us the most power of all. In this
example, we want a list of all the refined pages that are larger than 8.5 x 11. Since we need to
look at every page in order to determine its size, this requires us to introduce a second loop.
The outer loop goes through all the input files, while the inner (nested) loop goes through all
the refined pages for each input file.

"First we need to create a holder for the newlist we will be building
Di m newLi st As System Col | ections. ArrayLi st = New System Col | ecti ons. ArraylLi st

"Now we create a counter variable and initialize to the value 0
Dmi As Integer =0

"Next we create a loop that will go through all the input files (until
"the counter i reaches the end of the list)
Do Wiile (i & t; triggerEvent.|nputFiles.Length)

"Create a second counter and nake a second | oop to go through all
' the pages for input file i

Dmj As Integer =0

Do Wiile (j & t; triggerEvent.InputFiles(i).Pages.Length)

"Grab the jth Page fromthe ith Input File
Di mt hePage As Page = triggerEvent.InputFiles(i).Pages(j)

"See if the page is larger than 8.5 x 11 (in points) — if so add it to our Ilist
If (thePage. Tri nGi ze. x > 8.5*72 AND t hePage. Trini ze.y > 11*72) Then
newli st . add(t hePage

End If

"Increnent the val ue of |j
i =0 +1)
Loop

"Increnent the value of i

i = (i + 1)

Loop

"Finally, we convert our list into an Array of Pages and assign it to the
' Pages paraneter of the action

action. Pages = newlLi st. ToArray(CGet Type(Creo. PW5. Aut omat i on. Pri ner gyDat aMbdel .
Page))

	Working with arrays

