Best practices for Ink Optimizing Solution ## **Rendering intent** Rendering intent is the mapping strategy used to convert color spaces. In general, when creating ink-optimizing DeviceLinks: - When converting between two gamuts of greatly differing volume—for example, when converting from a larger gamut color input such as "GRACoL C1 2006" to a smaller gamut CMYK Reference PCO such as "SWOP C3.", select the Target Simulation or Color Space Conversion check box, and choose Perceptual from the Rendering intent list - When converting between two gamuts that are not different, clear the Target Simulation or Color Space Conversion check box, and choose Relative Colorimetric from the Rendering intent list ### **Total ink limit** Total ink limit (TIL) is a restriction on the maximum amount of ink allowed at one time during four-color printing. For example, if you allow 100% of all four inks to print at one time, this would be specified as 400% TIL and would result in 400% ink coverage. It recommended that you use the default TIL values. The default TIL values are aligned with what the device is capable of for a given print condition. If you decrease the TIL values below normal operating conditions, ink savings may not occur. | For this device condition | Use this TIL range | |---|--------------------| | Heated web offset press printing on coated paper | 280-300% | | Newspaper web offset press printing on uncoated paper | 240% | | Sheetfed offset press printing on coated paper | 320-350% | #### **Black Start** The recommended Black Start value is between 10 and 25. #### **Maximum Black** Maximum black is the highest amount of black that can be introduced to a color build. Typical values for maximum black are between 90% and 100%. However, because of the increased use of black in the ink-optimized separation, you may want to set Maximum Black to 100%. ## **Black strength** Black strength sets the level of available black in a color build. Lower levels of black strength retain a corresponding amount of CMY in the color build. For an average printing condition, set the black strength to a value between 75% and 85%. If your process is under tight control, it is possible to use a Black Strength value higher than 85% and achieve a greater ink savings. To run high levels of black strength, black ink must be printed at the density at which it was characterized. It is common to characterize black at a density of 1.8 and print it at 2.0 or higher, for work that contains images and text. With high levels of black strength, printing a higher density than is characterized darkens images and reduces chroma (also known as a "muddy" look). To avoid this, maintain process control so that the density and TVI values of the production run match very closely with the density and TVI values of the characterization run. **Target Simulation** and **Color Space Conversion** check boxes Select these check boxes to change the output color to more closely match the source space that is defined. | For this scenario | Do this | |--|---| | You have defined an offset press device condition for a PCO and have created gray-balanced curves to simulate a target. You want to apply ink savings to this condition on output without changing the simulation color to press | Select the DeviceLink method type as Ink Optimizing Solution , and clear the Target Simulation check box. This DeviceLink does not change the overall color and | | | provides ink savings | | You have defined an offset press device condition for a PCO and have created gray-balanced curves to simulate a target. You want better alignment to your source target—for example, better blue sky | Select the DeviceLink method type as Ink Optimizing Solution , and select the Target Simulation check box. | | You have defined an offset press device condition for a PCO and have created gray-balanced curves and a DeviceLink. You would like to take advantage of the Ink Optimization feature | Select the DeviceLink method type as Ink Optimizing Solution , and select the Target Simulation check box. | The same principle applies in the context of an SCO. However, with an SCO, you are managing the conversion rather than the simulation. Consequently, when you select the **Color Space Conversion** check box, the source space is the color response of the PCO.